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Abstract. We determine the universal law for fidelity decay in quantum computations of complex dynamics
in presence of internal static imperfections in a quantum computer. Our approach is based on random
matrix theory applied to quantum computations in presence of imperfections. The theoretical predictions
are tested and confirmed in extensive numerical simulations of a quantum algorithm for quantum chaos
in the dynamical tent map with up to 18 qubits. The theory developed determines the time scales for
reliable quantum computations in absence of the quantum error correction codes. These time scales are
related to the Heisenberg time, the Thouless time, and the decay time given by Fermi’s golden rule which
are well-known in the context of mesoscopic systems. The comparison is presented for static imperfection
effects and random errors in quantum gates. A new convenient method for the quantum computation of

the coarse-grained Wigner function is also proposed.

PACS. 03.67.Lx Quantum computation — 05.45.Pq Numerical simulations of chaotic systems —

05.45.Mt Quantum chaos; semiclassical methods

1 Introduction

Recently a great deal of attention has been attracted
to the problem of quantum computation (see e.g. [1-3]).
A quantum computer is viewed as a system of qubits.
Each qubit can be considered as a two-level quantum sys-
tem, e.g. one-half spin in a magnetic field. For n, qubits
the whole system is characterized by a finite-dimensional
Hilbert space with N = 2™« quantum states. It has been
shown that all unitary operations in this space can be
realized with elementary quantum gates which include
one-qubit rotations B(Y) and two-qubit controlled opera-
tions, e.g. controlled-NOT gate CV) or controlled phase-
shift gates B (¢) (see e.g. [3,4]). The gates CV) and
B®)(¢) assume that the interaction between qubits can
be switched on and off in a controllable way with suffi-
ciently high accuracy. Various computational algorithms
in the space N can be represented as a sequence of ele-
mentary gates. A general unitary operation (unitary ma-
trix) in this space requires an exponential (in n,) number
of elementary gates. However, there are important exam-
ples of algorithms for which the quantum computation can
be performed with a number of operations (gates) much
smaller than with the classical algorithms. The most fa-
mous is the Shor algorithm for factorization of integers
with n, digits which on a quantum computer can be per-
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formed with O(ng) gates contrary to an exponential num-
ber of operations required for any known classical algo-
rithm [5]. Another example is the Grover algorithm for
a search of unstructured database which has a quadratic

speedup comparing to any classical algorithm [6].

A quantum computation can be much faster than a
classical one due the massive parallelism of many-body
quantum mechanics since any step of a quantum evolu-
tion is a multiplication of a vector by a unitary matrix.
A very important example is the quantum Fourier trans-
form (QFT) which can be performed for a vector of size
N = 2" with O(n,?) gates instead of O(n,2") classical
operations required for the fast Fourier transform (FFT)
(see e.g. [1,3]). With the help of QFT the quantum evolu-
tion of certain many-body quantum systems can be per-
formed in a polynomial number of gates [7,8]. Another ex-
ample can be found in the evolution of quantum dynamical
systems which are chaotic in the classical limit (see e.g. [9,
10]). Such systems are described by chaotic quantum maps
and include the quantum baker map [11], the quantum
kicked rotator [12], the quantum saw-tooth map [13] and
the quantum double-well map [14]. For them a map it-
eration can be performed for N-size vector in O(n,?)
or O(ng?) gates while a classical algorithm would need
O(ng2™) operations. This however does not necessary
lead to an exponential gain since the final step with extrac-
tion of information by measurements also should be taken
into account. Thus, for example, the quantum simulation
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of the Anderson metal-insulator transition gives only a
quadratic speedup even if each step of quantum evolution
is performed in a polynomial number of gates [15]. Among
other algorithms, let us refer to the quantum computation
of classical chaotic dynamics where some new information
can be obtained efficiently [16,17].

The main obstacle to experimental implementation of
a quantum computer is believed to be decoherence induced
by unavoidable couplings to external world (see e.g. [18]).
However, even if we imagine that there are no external
couplings there still remains internal static imperfections
inside a quantum computer. These static imperfections
generate residual couplings between qubits and variation
of energy level-spacing from one qubit to another. As it
was shown in [19] such imperfections lead to emergence
of many-body quantum chaos in a quantum computer
hardware if a coupling strength exceeds a quantum chaos
threshold. In a realistic quantum computer this thresh-
old drops only inversely proportionally to the number of
qubits ng while the energy spacing between nearby lev-
els drops exponentially with n,. The dependence of this
threshold on quantum computer parameters was studied
analytically and numerically by different groups [19-23]
The time scales for onset of quantum chaos were also de-
termined.

It is of primary importance to understand how effects
of external decoherence and internal static imperfections
affect the accuracy of quantum computations. A very con-
venient characteristic which allows to analyze these effects
is the fidelity f of quantum computation. It is defined as
f(t) = |[(W(t)|v(t))|* where [¢(¢)) is the quantum state
at time ¢ computed with perfect (or ideal) gates, while
[1e(t)) is the quantum state at time ¢ computed with im-
perfect gates characterized by an imperfection strength e.
If the fidelity is close to unity then a quantum computa-
tion with imperfections is close to the ideal one while if f
is significantly smaller than 1 then the computation gives,
generally, wrong results.

At first the fidelity was used to characterize the ef-
fects of perturbation on quantum evolution in the regime
of quantum chaos [24]. Indeed, for the classical chaotic
dynamics the small errors grow exponentially with time
while for the quantum evolution in the regime of quantum
chaos small quantum errors only weakly affect the dynam-
ics. For example, the time reversibility is broken by small
errors for classical chaotic dynamics while it is preserved
for the corresponding quantum dynamics in presence of
small quantum errors [25,26]. In the context of quantum
computation the qualitative difference between classical
and quantum errors is analyzed in [16]. Recently, the in-
terest to the fidelity decay induced by perturbations of
dynamics in the regime of quantum chaos has been re-
newed [27-34]. It has been shown that the rate I" of expo-
nential decrease of f is given by the Fermi golden rule for
small perturbations while for sufficiently strong perturba-
tions the decay rate is determined by the Kolmogorov-
Sinai entropy related to the Lyapunov exponent of classi-
cal chaotic dynamics [28,29]. For small perturbations the
fidelity decay can be expressed with the help of correlation
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function of quantum dynamics that allows to understand
various peculiarities of the decay [31].

Until recently the fidelity decay and accuracy of
quantum computations have been mainly analyzed for
the case of random noise errors in the quantum
gates [13,14,16,35-37]. Quite naturally in this case the
rate of fidelity decay is proportional to the square of error
amplitude e (I"  £2). Indeed, a random error of ampli-
tude ¢ transfers a probability of order €2 from the ideal
state to all other states and as a result the fidelity remains
close to unity (within e.g. 10% accuracy) during a time
scale ty ~ 1/(2n,). Here n, is the number of gates per
one map iteration and for polynomial algorithms ng ~ nj
(e.g. for the quantum saw-tooth map v = 2 [13]).

Contrary to the case of random errors the effects of
static imperfections on fidelity decay have been stud-
ied only in [13,36]. The numerical simulations performed
there with up to 18 qubits show that for small strength
of static imperfections € the time scale ¢y varies as ty ~
1/(engy/Mq). Such a dependence implies that in the limit
of small ¢ the effects of static imperfections dominate
the fidelity decay comparing to the case of random er-
rors [13,36]. Simple estimates based on the Rabi oscilla-
tions have been proposed to explain the above dependence
extracted from numerical data [13,36].

Since the numerical results show that the static imper-
fections lead to a more rapid fidelity decay, compared to
random errors fluctuating from gate to gate, it is impor-
tant to investigate their effects in more detail. This is the
aim of this paper in which we carry out extensive numeri-
cal and analytical studies of static imperfections effects on
fidelity decay using as an example a quantum algorithm
for the quantum tent map which describes dynamics in
a mixed phase space with chaotic and integrable motion.
For the case when the algorithm describes the dynamics in
the regime of quantum chaos a scaling theory for univer-
sal fidelity decay is developed on the basis of the random
matrix theory (RMT) [38-40]. This theory is tested in ex-
tensive numerical simulations with up to 18 qubits and the
obtained results confirm its analytical predictions which
are rather different from the conclusions of the previous
studies [13,36]. We also investigate the regime of fidelity
decay for integrable quantum dynamics where the situa-
tion happens to be more complicated. In addition, a simple
quantum algorithm is proposed for approximate compu-
tation of the coarse-grained Wigner function (the Husimi
function) [41,42] and its stability in respect to imperfec-
tions is tested on the example of quantum tent map.

It is important to note that all quantum operations re-
quired for implementation of the quantum tent map have
been already realized for 3-7 qubits in the NMR-based
quantum computations reported in references [43,44]. An
efficient measurement procedure for fidelity decay in quan-
tum computations is proposed in [45].

The paper is organized as follows. In Section 2 we
describe the classical and quantum tent map. The algo-
rithm for quantum dynamics is derived in Section 3. The
fidelity decay for random errors in quantum gates is ana-
lyzed in Section 4. The analytical theory for fidelity decay
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induced by static imperfections is developed on the ba-
sis of RMT approach in Section 5. This theory is tested
in extensive numerical simulations presented in Section 6.
An approximate algorithm for the quantum computation
of the Husimi function is studied in Section 7. The con-
clusion is given in Section 8.

2 Classical and quantum tent map

We consider a kicked rotator whose dynamics is governed
by the time dependent Hamiltonian,

Hﬁ%*ﬂi+VW)§i5@fm) (1)
a 2 m=—oo
with the potential of kick
0<b<m

Vi(9) =
T<60<27

71269(9 - W)v
(s mtoen

where 6 is taken modulo 27 and §(t) is a d-function, m is
an integer. The parameter k determines the kick strength
and T gives the rotation of phase between kicks. It is easy
to see that the classical evolution for a finite time step
t — t+ 1 with respect to the Hamiltonian (1) can be
described by the map,

p=p-— V/(G)a

Here bars mark new values of the dynamical variables after
one map iteration. This map is similar in structure to the
Chirikov standard map [46]. The derivative of the kick-
potential,

- KZ-0), 0<f<n "
B k(=3 +9), T<60<2m’

0=0+pT (mod 27). (3)

has a tent form and is continuous but not differentiable at
0 = 0 and 0 = 7. This is an intermediate case between the
standard map [46] with a perfectly smooth kick-potential
and the saw-tooth map [13] with a non-continuous poten-
tial.

The dynamics of the classical tent map (3) depends
only on one dimensionless parameter K = kT, its prop-
erties have been studied in [47,48]. For small values of
K the dynamics is governed by a KAM-scenario with the
Kolmogorov-Arnold-Moser (KAM) invariant curves and a
stable island at § = 37/2, p = 0 and a chaotic layer around
separatrix starting from the unstable fixed point (saddle)
at 0 = w/2, p = 0. At K = 4/3, the last invariant curve
is destroyed and one observes a transition to global chaos
with a mixed phase space containing big regions with reg-
ular dynamics [47,48].

In Figure 1, the Poincaré sections of the map (3) for
the three values K = 0.53, 4/3, 1.7 are shown. Here we
have replaced p by its value modulo 27/T which is ap-
propriate since the classical map is invariant with respect
to the shift p — p + 27/T. Figure 1 confirms the above

k= 0.53 k=4/3 k=17

Fig. 1. Classical Poincaré sections of the map (3) in (6, p)
planefor T=1and K =k=053, K =k=4/3and K =k =
1.7.

scenario of a transition to global chaos at K = 4/3. In
the following, we are particularly interested in a typical
case K = 1.7, which exhibits global chaos with quite large
stable islands in phase space related to the main and sec-
ondary resonances.

At K > 4, the phase space becomes completely chaotic
and the dynamics is characterized by a diffusive growth in
p. The diffusion rate D in p can be obtained with the help
of random phase approximation that gives

2

(p—po)*) = Dt, D=(V'(0)) =5k (5

Here and below ¢ is an integer which gives the number of
map iterations (kicks).

The quantum dynamics of the Hamiltonian (1) is given
by the Schrédinger equation,

.0
i [0(8)) = H(®) (1)) (6)

Here in the Hamiltonian H(t) the variables p and 8 are

operators with the commutator [p,0] = —i. They have
integer eigenvalues p for p and real eigenvalues 6 in the
interval [0, 27| for 0. As in the classical case one can de-
termine the evolution for one map iteration:

(t+ 1)) = U () = e T2 eV D (). (7)

Equation (7) corresponds to the quantized version of the
classical map (3) and defines a quantum map that can be
efficiently simulated on a quantum computer. Here A = 1
and the quasiclassical limit correspond to T' — 0, k — oo
with K = kT = const.

For quantum dynamics we concentrate our studies on
the case K = kT = 1.7 and T = 27/N that corresponds
to evolution on one classical cell (see Fig. 1) with N quan-
tum states. As an initial state we use a minimal coherent
wave packet corresponding to a given N which is placed
in a chaotic or integrable component (near the unstable
or stable fixed point at p = 0,0 = 7/2 or § = 37/2). An
example of the Husimi function (see Sect. 7) for a chaotic
case is shown in Figure 2 for different moments.

3 Quantum algorithm

The quantum map (7) can be simulated on a quantum
computer in a polynomial number of gates. The quantum
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Fig. 2. Density plots of the Husimi functions (see below
Sect. 7) of the quantum state [1(t)) for t = 5 (top left panel),
t = 15 (top right panel) and t = 5625 (bottom left panel) with
an initial state |¢(0)) chosen as a minimal coherent (Gaussian)
wave packet closely located to the saddle at § = 7/2, p = 0.
The bottom right panel corresponds to the quantum state after
5625 iterations computed on a quantum computer with static
imperfections for e = 7 x 1077, here the fidelity is f = 0.9388
(see below Sects. 3, 6 for details). The density is minimal for
blue/black and maximal for red/white. All panels correspond
to ng = 16 qubits, i.e. to a finite dimensional Hilbert space of
dimension N = 2'¢, T = 27 /N.

algorithm has similarities with those described in [12,13].
To perform one iteration of the quantum map (7) we rep-
resent the states [¢) by a quantum register with n, qubits.
In particular, the eigenstates |p) of the momentum oper-
ator are identified with the quantum-register states

|Oéo,0£1,... . |Oénq71>nq71 (8)

7anq71> = |Oéo>o |a1)1

where a; = 0 or 1 and

ng—1

p=Y a2 9)
=0

The states |0),; and |1); correspond to the two basis states
of the jth qubit. Obviously, this representation introduces
a Hilbert space of finite dimension N = 2"¢; the operator p
has the eigenvalues: p=0,..., N — 1.

A quantum computer is a machine that is able to
prepare a quantum register with a well defined initial
condition and to perform certain well controlled unitary
operations on this quantum register. These particular op-
erations are called quantum gates and one typically as-
sumes that the quantum computer can be constructed
with quantum gates that manipulate at most two qubits.

The European Physical Journal D

Here we use as elementary gates the phase-shift gates BJ(-l)

. 2) .
and controlled phase-shift gates BJ(.k :

BY(g)p) = €% |p), (10)
B (9)Ip) = € p), j#k (11)

where p is of the form (9). These gates provide a phase
factor e'® if a; = 1 for the simple phase-shift or if a; =
ayg = 1 for the controlled phase-shift. Using equation (9),
one easily verifies that the momentum dependent factor
of the unitary operator U in (7) can be expressed in terms
of these gates by:

ng—1 ng—1
e 02 = IT BG) (—r2i+%) T] BV (-T2%1).
i<k j=0

(12)
The situation is different for the phase factor containing
the kick-potential since this factor is not diagonal in mo-
mentum representation. It is therefore necessary to trans-
form to the basis of eigenstates of the operator 6. For this,

following [1] we consider the unitary operator Ugpr de-
fined by:

N—
1
Uqgrr |p) = \/—— Z 2mipp(N D) (13)

Then the eigenstates of 6 with eigenvalues § = 27p/N are
simply given by: UéblT |p) and more generally the opera-

tors 6 and p are related by:

A 27 P
0 =Ugpr (T) Uqrr. (14)

Using equations (2, 9, 14) it is straight-forward to show
that the unitary factor of U containing the kick-potential
can be written as:

ng—2

71V 0) (3)
UQFT H {ngnq—l
j<k

« Bj(i)(kﬂz 2j+k72nq+2)}
ng—2

e

(1) —Mng(9j—ng+1 __
x B (kn? 27 (27 1))}

k'7'('2 2j+k72nq+3)

kﬂ'z 2j7nq+2(2jfnq+1 o 1))

UQFTo
(15)

Here we have used a three-qubit gate for a controlled-
controlled phase-shift defined by (cf. Egs. (10, 11)):

Bij(0) Ip) = /5212 p).

In equation (15) it appears for I = n, — 1 because of the
two distinct cases in equation (2). In principle, this gate
is not directly available in the set of one- and two-qubit

(16)
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gates used for a quantum computer. However, it can be
constructed from 5 two-qubit gates by:

3 2) (¢ 2 (¢ N) (2 ¢ N
B =57 (§) 82 (3) o B (-5) o
1

where C,iiv) is the controlled-not gate that exchanges the
states |0)x and |1), for the kth qubit if a; = 1. In matrix
representation it is given by:

1000
0100
0001
0010

N
clN) = (18)

where the index «; corresponds to the outer block struc-
ture and ay, to the inner block structure.

Following the description [1], the QFT operator Ugpr
can be written in the form:

ng—1

UétéT =R H
j=0

ng—1
A I BG (Er2ih)
k=j+1

(19)

where R is the unitary operator that reverses the order
of the qubits and A; is a one-qubit gate with the matrix

representation:
1 /11
/4j3: :75 (.1__]>

We note that in the outer product in equation (19) the
factors are ordered from left to right with increasing j.

Combining, equations (12), (15) and (19), we see that
the quantum map (7) can be expressed by a total num-
ber of ng = (9/2)nZ — (11/2)n, + 4 elementary quantum
gates (and 2 R-operations). On a classical computer one
iteration of the quantum tent map requires O(ny2") op-
erations coming mainly from the FFT.

To investigate the stability of the quantum algorithm
for the tent map we consider two models of imperfections.
The first model represents the random errors in quantum
gates fluctuating in time from one gate to another (ran-
dom noise errors). In this case for all phase-shift gates
we replace ¢ by ¢ + d¢ with random d¢ € [—¢, €] that
is different for each application of the gate. For the gates
containing the Pauli matrix o, we replace it by n-o where
n is a random unit-vector close to e, with |n —e,| <e.

The second model describes only static imperfections
and is similar to one used in [13,15,19,36]. In this case the
effect of static imperfections is modeled by an additional
unitary rotation between two arbitrary gates which has
the form: U, = €. Here the Hamiltonian § H is given by:

(20)

ng—1 ng—2

0H = Z d; 0'§Z) +2 Z J;j 0§x) 0§i)1 (21)
§=0 §=0

where a§y) are the Pauli matrices acting on the jth qubit

and ¢;, J; € [—\/55, \/gzs] are random coefficients which

04 P

06 B

0 02 0.4 0.6 T 0.8

Fig. 3. Data points (d) represent the fidelity decay for the
case of random noise errors in the gates of quantum algorithm.
The fidelity f = [(¥(t)|¢noise(t))|? is shown as a function of
the scaling variable z = 0.095 ¢ £2 ng with n, = 10,12, 14,16
and 0.001 < e < 0.1. The full line corresponds to the function
f = exp(—=z). Data points (a), (b) and (c) represent the fi-
delity decay (f = [{(¥(t)[1bstas (£))|?) as a function of the scaling
variable z = t &2 nqnf] for the case of static imperfections with
ng = 10, ng = (9/2)n2 — (11/2)ng + 4 being the number of
elementary gates for one application of the quantum map and
with (a) e =3 x 1075, (b) e =6 x 10"% and (c) e =5 x 107",
The scaling variable x corresponds in all cases to I't where I
is the decay rate obtained from Fermi’s golden rule. Therefore,
the data curves (a), (b), (c) are tangent to exp(—=z) for small z.
The number of shown data points has been strongly reduced in
order to increase the visibility of the different symbols. (Same
approach is used for other figures.) Here and in Figures 4-8,
the initial state is as in Figure 2, K = 1.7, T = 27/N.

are drawn only once at the beginning and kept fixed during
the simulation. These coefficients determine one disorder
realization. In addition to a linear chain of qubits we also
analyzed a case with qubits distributed on a square lattice
which gave qualitatively similar results (see Sect. 6).

4 Quantum computation with random errors

The numerical results for fidelity decay induced by random
errors in quantum gates are presented in Figure 3. They
clearly show that the decrease is exponential with time ¢
and is given by the fit:

f(t) = exp(—t/t,); t, = 1/(0.09552715) ~ 47/(e*ny).

(22)
As discussed in the introduction, the decay rate per gate
is proportional to 2 since on each step noise transfer
such a probability from an ideal state to all other states
(see [13,14,16,35-37]). With a few percent accuracy the
numerical constant in (22) is close to the lower bound dis-
cussed in [37].

While with random errors the fidelity drops by a sig-
nificant amount in a purely exponential way the situation
in the case of static imperfections is more complicated (see
Fig. 3). In this case the initial exponential decrease is fol-
lowed by a Gaussian exponential one. As a result static
imperfections give a faster decay of fidelity. The transi-
tion between these two types of decay depends on the
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strength of imperfections €. Moreover, in scaled variables
the weaker is € the stronger is the Gaussian decrease of
fidelity (see Fig. 3). We shall describe these phenomenon
using the following RMT approach.

5 Quantum computation with static
imperfections: RMT approach

Let us denote by U the unitary operator for the quan-
tum map with static imperfections and by U the unitary
operator for the ideal quantum map. We denote by Uj,
j = 1,...,n4 the elementary quantum gates which con-
tltute the quantum map. According to the description of
the quantum algorithm in Section 3 we write:
U=Uy,...UlU; (23)
and

U= Un, e Uy H et H (24)

where 0 H is the Hermitian operator describing the static
imperfections. In numerical simulations we have used the
particular expression (21) for 6H but we mention that
our approach does not rely on this expression and is much
more general. We now introduce an effective perturbation
operator for the full quantum map by: U = U eHerr | The
operator d Heg is determined by:

oiOHott _ i0H(ng—1)  LidH(1) ,i0H (25)
with

§H(j)=U;y ..U 6H Uy ... Ujy. (26)

We mention that the precise relation between § Heg and
0H is not important for the following argumentation and
we will need only one characteristic time scale t. de-
fined by:

1 1

t_c = Ntr ((SHEHQ) .
We furthermore assume that tr(6Hes) = 0 (the case of
tr(0Heg) # 0 can be trivially transformed to the this
case [31] and dH in equation (21) has actually a vanishing
trace).

Following reference [31], we express the fidelity in
terms of a correlation function of the perturbation. For
this we write the fidelity at time ¢ as f(t) = |A(t)|? with
the amplitude:

A(t) = <U—t (UeiJHeff)t>
<ei5Heff(t—1) o

(27)

28
o (28)
10 Hett (1) ;16 Hett (0) >

Q

and
5Heff (T) =

Here (---)q denotes the quantum expectation value. For
a fixed initial state |¢o) this expectation value is given
by: (---)q = (¥ol| - |[¢o). However, in the following we
average over all possible initial states that corresponds

U™ 6Heg U™ (29)
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to: (---)o = (1/N)tr(...). Since we are interested in the
case where the fidelity is close to 1 we can expand (28) up
to second order in 6 Heg (or equivalently in €):

t—1 t—1

At~ 141 (Her(r) g — % S (3Ha?(7),

=0 =0

l\’)lr—t

i 2 dHeg(T1 5Heg(72)>Q. (30)

Now we introduce the correlation function C(7) by:

= te (0Het(T1)0 Het (T2))
= te (0Hest (11 — 72)0 Herr (0))

and we note that (6Hew(7))g = (1/N)tr(0Hex) = 0.
Combining equations (27, 30, 31), we obtain:

C(m — 2) (31)

(32)

This provides the general expression relating the fidelity
and the correlation function (31) previously obtained in
reference [31].

We now assume that the unitary quantum map U
can be modeled by a random matrix drawn from Dyson’s
circular orthogonal (8 = 1) or unitary (8 = 2) ensem-
ble [38-40]. As we will see it is useful to express U in
terms of its eigenvectors and eigenphases:

01

U=velyt ¢= (33)

On

The matrix V is either real orthogonal (8 = 1) or complex

unitary (6 = 2). Inserting equations (29, 33) in (31), we
obtain:
te A .
C(r) = str (Ve ™ VIsHg Ve VIsHe) . (34)

In the following, we want to evaluate the average of C(7)
with respect to U. We first evaluate the average with re-
spect to the matrix elements of V' which gives for N > 1:

€= (5-1) 5+ 52 < )3 e”<9'-9k>> - (39)

J,k=1

Here we have used that tr(6He.s) = 0 and we have re-
placed tr(6Heg?) = N/t. according to equation (27).
We have furthermore neglected corrections of order 1/N?
which arise from small correlations between matrix ele-
ments of V' at different positions. We note that in (35) the
first term vanishes for § = 2. For 8 = 1 this term arises
from additional contributions (in the V-average) because
the elements of V' are real for this case. The diagonal con-
tributions with j = k in the second term of (35) provide
the constant 1/N (which simplifies the first term). The
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average over the non-diagonal contributions with j # k
can be expressed [39,40] in terms of a double integral over
the two-point density for the eigenphases ;. Since this
two-point density is related to the two-point correlation
function of the random matrix theory we obtain for 7 > 1:

1 /2 T
=5 (52 (5)) (36)
where -
bo(7) = / ds Ya(s) e*™i7s (37)
is the “two-level form factor” defined as the Fourier

transform of the two-point correlation function Ya(s).
The form factor of the Wigner-Dyson ensembles is well-
known [38-40]. For the unitary and orthogonal symmetry
class it reads (in the large N limit):

1-— |7~'| if |7~'| <1,
B=2 A =1 o i jape. (38)
1=217|+ |7 (27| + 1) if |7] <1,

b(T) = _
7 1+ |7 (32

it |7))1.
(39)

Inserting the average correlation function (36) in (32) and
replacing the discrete sum by an integral, we finally obtain
the following scaling expression for the fidelity:

N t
~mn sy~ 3 () (10)
with
2 5
x(s) =s+ 3 s+ 0x(s) (41)
dx(s)==2 [ dr(s—7)ba(T) (42)
0
where s = t/N. Using the random matrix expres-

sions (38), (39), we find for 8 = 2:

752+%s3 ifs<1,
ox(s) = )

(43)

and for g = 1:

L (—3s—24s% + 17s%)

i <
+5 (1435 —45%) In(2s 4 1) } ifs<1,

In(3)(s —1)— 2

1(2—3s+5?)

13(1— 35+ 45%) In(2s — 1)
(

S(1+3s—4s%) In(2s + 1)

if s > 1.

+ o+ 4o

(44)

Equations (40-44) provide the key result of this section.
From the practical point of view the contribution of dx(s)
in (41) is not very important, since (for 5 = 1):
2 .
2 3
—s°+ =5
T3

dx(s) =~ (if s<1),

Sx(s) ~ G In(3) — 1) 5+ éln(2s) _ Zm(s) 4 % (45)

1
~ —0.17604s + 6 In(2s) — 0.49063 (46)

(if s>1).

Therefore for small s the linear term and for large s the
quadratic term dominate the behavior of x(s) in the ex-
pression (41). In the next section we compare this theo-
retical random matrix result to the numerical data of the
fidelity obtained for the quantum version of the tent map.
Before doing so, we want to discuss three particular
points. First, we have to evaluate the time scale t. that
characterizes the effective strength of the perturbation.
From equations (25, 27), we obtain in lowest order in &:

ng—1

tlc _ % > wr(sHG)HM))

k=0

(47)

with 0H (j) given by (26). This expression is similar in
structure to equations (30) or (32) but with the impor-
tant difference that here the “time” index corresponds to
the number of elementary gates and not to the iteration
number of the quantum map. Since the elementary gates
affect only one or two qubits (“spins”) the correlation de-
cay between dH (j) and dH (k) will be quite weak and we
can obtain a good estimate of (47) by:

1 1
L= angﬁtr(éHQ) ~ anl 5nge’

(48)
where a < 1 is a numerical constant taking into account
the exact correlation decay and the trace has been eval-
uated using equation (21). The numerical results of the
next section indicate clearly that a =~ 1/5 such that the
overall numerical factor is 1 and we have:
1 9 , 11

—2 q—?nq—l—él.

(49)
The second point to discuss concerns the fact that the
phase space is mixed and not completely chaotic. As it
can be seen from Figure 2 the chaotic region fills approxi-
mately a fraction of 0.65 of the full phase space. If the ini-
tial state is a Gaussian wave packet placed in the chaotic
region then its penetration inside the integrable islands in-
duced by quantum tunneling will take exponentially long
time scale: o< exp(N). Therefore with a good approxi-
mation we may say that in absence of imperfections the
dynamics takes place only inside the chaotic component.
Let us introduce now the Heisenberg time scale ty = 2™
which is determined by an average energy level-spacing for
2™¢ quantum levels in the whole phase space. If the whole
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phase space is chaotic then in the above RMT approach
N = ty. However, for the case of Figure 2 the chaotic com-
ponent covers only a relative fraction ¢ = 0.65 of the whole
phase space. Due to that in the previous RMT expressions
we should put N =~ oty = 0.65 x 27 to determine prop-
erly the number of chaotic states. As a consequence, the
expression (40) now reads (8 =1 for the tent map):

—(Inf(t))v ~ UtHX (L) ~ ti 4 2 ¢

tc g tH

Here we have neglected the contribution of dx(s).

It is interesting to note that there is a formal anal-
ogy between the fidelity decay given by (50) and the de-
crease of the probability to stay near the origin which
has been studied in mesoscopic and RMT systems (see
e.g. [49-53]). There, the time scale t. is replaced by the
diffusive Thouless time scale ¢t} and the second term with
the Heisenberg time scale has negative sign.

Finally, the third point concerns the fact that the
above results are based on the assumption that the quan-
tum evolution given by the exact quantum algorithm can
be described by RMT. In particular, we assume that in
the dynamical evolution the ergodicity is established very
rapidly after a few map iterations. This is correct for the
choice T = 27/N which corresponds to the dynamics in
one classical cell. We note that it is also possible to have
many classical cells by the alternative choice T'= 2nL/N
with L > 1 but fixed in the semiclassical limit N — oco.
For K above the global chaos border, the classical dynam-
ics is governed by a diffusive dynamics which covers all
cells after the Thouless time scale t1y, ~ N?/D ~ L?/K?
where D is the diffusion constant given by equation (5). In
this case the theoretical treatment has to be modified since
the matrix U will not be a member of the circular ensem-
ble. However, choosing a static perturbation sufficiently
complicated such that it can be modeled by a random ma-
trix, one can show that the relations (40-42) relating the
fidelity to the two-level form factor are still valid. The two-
point energy level correlation function for diffusive metals
has been calculated in the frame work of diagrammatic
perturbation theory by Altshuler and Shklovskii [58] (see
also the review [50]). The two-level form factor is now
given by b (7) = be rm(T) + be,qai (T) where by gy denotes
the random matrix expressions (38) or (39) and be qif(7)
is the correction due to diffusive dynamics which is given
for a cubic sample by

2 ~
b27diff(%)=—— Z f'e_ﬂ'zg("?-’r...ni)rl (51)

Here d is the spatial dimension and g the dimensionless
conductance with g ~ tg/tTy and tTy, being the diffusive
Thouless time. In the limit 7 < ¢g~! (corresponding to:
t < trh since 7 = t/N with N ~ ty1) the sum can be
approximated by an integral:

) 7~_1—d/2

ba,aift (7)) = —=

B (4mg)d/2 (52

Inserting this in (42), we obtain the following diffusive
correction to the scaling function (41):

4 1 S37cl/2

B(2—d/2)(3—d/2) (4ng)d/?’

We note that this contribution dominates the nonlinear
RMT correction to x(s) in (41) for d = 1,2,3if 3 = 2 and
for d = 3 if § = 1. The fidelity itself is slightly reduced by
the diffusive correction according to:

5Xdiff(s) = (53)

—d/2 4d/2
F0) = frui(t) exp <B %> (54)

tet?

where B is a positive numerical constant of order one. We
mention that this interesting signature of the Altshuler-
Shklovskii corrections for diffusive quantum systems in the
fidelity decay is in principle accessible to efficient quantum
computation. For our case with # =1 and d = 1 this cor-
rection is small. However for general quantum algorithms
with diffusive behavior it may be important. The fact that
this correction reduces the fidelity agrees with the obser-
vation that the reduction of the volume of the chaotic
component (o) also leads to faster fidelity decay accord-
ing to equation (50).

6 Quantum computation with static
imperfections: numerical results

We now consider the precise model of static imperfec-
tions given by equation (21). We have numerically cal-
culated the fidelity f(¢) for the tent map with K = 1.7 for
ng € {6, 8, 10, 12, 14, 16, 18} and 5 x 1077 < e < 1074
For most cases we have determined the fidelity decay up
to time scales ¢ < tpap With f(tmaer) = 0.5 (except for
nqe = 18 and the smallest values of €) since we are mostly
interested in the regime (1 — f) < 1 for which the an-
alytical theory of the previous section is valid. We have
also considered values € > 10~* but here the value tmqx
is typically so small that the number of available data
points is not useful for the scaling analysis given below.
In most cases we have concentrated on one particular re-
alization of the random coefficients §; and J;. But we also
have made checks with up to 200 particular realizations.
As initial state |¢(t = 0)) we have chosen a coherent state
|o(po,00)) [see next section, Eqgs. (60, 61)] which is quite
well localized around a classical point (pg,6p) in phase
space with a relative width ~ 1/v/N ~ 27"4/2 in both
directions.

First, we chose a state close to the hyperbolic fix point
0 = 7/2, p = 0, well inside the chaotic region of phase
space. As can be seen in Figure 2 after ¢ = 15 iterations
the state fills up a big fraction of the chaotic region and
after t ~ 30 the state is practically ergodic. It covers then
a fraction o = 0.65 of phase space.

We have already seen in Figure 3 of Section 4 that
the fidelity decay for static imperfections is faster than
the exponential behavior for random errors. In order to
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Fig. 4. The fidelity decay for static imperfections [curves (a),
(b), (c) with same values for n, and ¢ as in Figure 3] and ran-
dom errors [curve (d) with ny = 10 and ¢ = 1.59 x 10~*] as a
function of ¢ in a double logarithmic representation. The full
lines correspond to power laws: —In(f) ~ t and: —In(f) ~ 2.
The value of € for (d) is chosen such that the average reduc-
tion of fidelity for one elementary quantum gate is the same as
for (c). The vertical dashed line provides the approximate po-
sition 0.50ty where the curves (a), (b), (c) change from linear
to quadratic behavior.

analyze this in more detail we show in a double logarithmic
representation in Figure 4: — In(f(¢)) as a function of ¢ for
the three cases already shown in Figure 3 (ny = 10 and
e=3x10756x 1075 5 x 10~7). For comparison, we
also provide one case for random errors (ny, = 10 and
e =1.59 x 1074).

For the static imperfections, we can clearly identify
a transition from linear to quadratic behavior at a time
scale 0.50ty ~ 0.325ty corresponding to the theoretical
expression (50). However, the quadratic regime is best
visible for the smallest values of € due to the restriction
—In(f) <In(2). For the case of random errors there is no
such transition and the linear behavior applies for all time
scales.

To analyze this transition in a quantitative way we
determine for each value of ng, and ¢ two time scales t.
and by the numerical fit

t t?
Ec C{H ’

+

y(t) = —In(f(2)). (55)

In order to prevent this fit to be artificially dominated by

the large values of ¢ (i.e. the quadratic regime) we mini-
mize:

2

d(ao, a1) :ZEE:?U(t)[y(t)‘* agt — a1t2] (56)

t

with an appropriate weight factor w(t) ~ 1/(ty*(t)). The
factor 1/y? ensures that the vertical distance to be mini-
mized is measured in the logarithmic representation for y.
The other factor 1/t takes into account that the horizon-
tal density of data points in the logarithmic representa-
tion increases with ¢. The fit procedure (56) corresponds
therefore to a fit in log-log representation such that also
the small time scales (and values of y) are taken properly
into account.

ng 6 . A

10000 } Tig

100

1

0.01

—In(f)te/ty

0.0001

0.01 ; |(‘}U
t/ty

Fig. 5. Scaling representation of the fidelity f for one particu-
lar realization of static imperfections. The upper scaling curve
shows: —In(f)t./tu as a function of t/tu with the two theoret-
ical time scales t. = (e2ngn2)~" and tg = 2. The full line in
the upper curve corresponds to the theoretical random matrix
result (40, 41) for 8 = 1. The lower scaling curve (shifted down
by a factor 0.01) correspond to — In(f)./tu versus ¢/fy with
the times scales {. and fg obtained from the fit (55) (using
appropriate weight-factors; see text) for each value of ng and
€. Here the full line corresponds to the analytical scaling curve:
y=x+ 2% (with y = —In(f)t./tu and x = t/tx). Data points
are shown for ¢ = 5x 1077 (and 6 < ny < 18); points for other
values of € with 5 x 1077 < & < 10™* fall on the same scaling
curve and are not shown.

According to the theoretical expression (50) one ex-
pects that:

- 1

te=t.= th =050ty ~ 0325ty (57)

e2ngn2’
with ty = 2"« and ny = nZ—(11/2)n,+4. This theoretical
prediction is verified in Figures 5-8.

In Figure 5, we show two types of scaling curves for
the fidelity. The first (upper) curve shows: —In(f)t./tu
versus t/ty with the time scales t. and ty given above.
We observe that the numerical data coincide very well for
ng > 10 with the analytical random matrix result (40, 41)
for B = 1. The data for ny, = 6, 8 show a moderate devi-
ation for ¢ > ty. We note that for this first scaling curve
the dependence of the scaling parameters ¢, and ¢y on ¢
and n, is entirely determined by their theoretical expres-
sions. This is different for the second (lower) scaling curve
where: — In(f)t./ty versus t/ty is shown. Here the scaling
parameters 7. and y; have been obtained by the fit (55)
for each value of ny and €. Therefore all data coincide well
with analytical scaling expression (55).

It is important to note that both scaling curves cover
10 orders of magnitude and provide a strong confirma-
tion of the crossover from linear to quadratic behavior
predicted by the RMT approach. We mention as a side
remark that we have also performed a similar scaling anal-
ysis for the case of random errors. Here the scaling curve
is purely linear in accordance with Figure 3. However, this
gives a stronger confirmation of the linear behavior than
in Figure 3 since there the data for small ¢ and large n,
corresponding to the regime (1 — f) < 1 are quite badly
visible in contrast to the scaling curve.
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Fig. 6. The time scale {. obtained from the fit: —In(f) =
t/te + t?/(t.tu) versus the theoretical expression t. =
(sanng)fl in a double logarithmic representation. The full
line corresponds to t. = t.. The data points of top panel cor-
respond to the same realization of static imperfections as in
Figure 5 with 6 < ny < 18 and 5 x 1077 < ¢ < 10™*. The
bottom panel shows again the data points for 6 < n, < 18
and ¢ = 5 x 1077 (a) and ¢ = 107° (b) for the same real-
ization. The data points (c) are obtained from (f; )~ where
(---) denotes the average over 200 realizations of static imper-
fections for each value of ng, = 6, 8, 10, 12, 14 and e = 5x 10"
(statistical error bars are smaller than symbol size).

In Figures 6 and 7, the time scales . and {y obtained
from the fit (55) are shown versus ¢, and t;. We observe
that the first theoretical expectation f, = t. is very well
verified for the majority of data points. The small devia-
tion for the remaining points appear for small n, and the
largest values of € where the fit procedure is less reliable.
The second identity tg = 0.325ty is in general also quite
well verified. However, the deviations are slightly larger
especially for larger values of ¢. Furthermore, for n, > 14
the regime ¢ > ty is numerically not accessible and the
fit procedure amounts to extrapolate ¢ from data points
t ~ty or even t < ty for ng = 16, 18.

We also note that the data points for n, = 6, 8 (lower
panel of Fig. 7) lie above the theoretical line in accordance
with the first scaling curve in Figure 5.

We have also determined the time scale ¢y at which
f(ty) = 0.9. The theoretical expression (50) suggests:

2t In(10/9)

1+ +/1+ (8/0) (tc/tu) In(10/9)
0.2107 t..

14 /14 1.2967t./ty

ty =

Q
‘o
N

10°

107 ﬁ

10°

10

2 b 4 J
107 /

X%~
o

10° 10 10°

th

Fig. 7. The time scale {i obtained from the fit: —In(f) =
t/te + t?/(tctu) versus the Heisenberg time ty = 2" in a
double logarithmic representation. The full line corresponds
to tg = 0.50ty. The data points in the top panel correspond
to the same realization of static imperfections as in Figure 5
with 6 < ny, < 18 and 5 x 1077 < ¢ < 10~*. The bot-
tom panel shows again the data points for 6 < ng, < 18
and ¢ = 5 x 1077 [data points (a)] and ¢ = 107° [data
points (b)] for the same realization. The data points (c) are
obtained from (£, ") {((f.tm) ') ~* where (- --) denotes the aver-
age over 200 realizations of static imperfections for each value
of ng =6, 8, 10, 12, 14 and € = 5 % 1077 (statistical error bars
are smaller than symbol size).

For t. < ty this implies ¢ ~ t. In(10/9) while for ¢. > ty
we have t; ~ /I, tn = /T 2"¢/2. In Figure 8, we show ¢
obtained from the numerical data for ¢ = 107°, 5 x 10~
and all values of ng. The data points for n, > 10 coin-
cide very well with (58) while the points for ny, = 6, 8
lie slightly above the theoretical line. For comparison, we
also show the time scale ¢ ¢ obtained from the simplified ex-
ponential behavior f(t) = exp(—t/t.). Generally, t5 is be-
lieved to decrease with increasing n, and fixed ¢. However,
this is not the case if t. > ty, i.e. for e < 27"/2/(n,, /ng).
For very small values of € there is certain regime where ¢
first slightly increases with n, and then decreases.

In all presented numerical studies we considered the
static couplings between qubits ordered on a line. To check
that the results are not sensitive to this specific configura-
tion we also considered the case when qubits are located
on a square lattice as it was discussed in [19]. The ob-
tained results (that we do not show here) confirms the
RMT scaling (50).

The case of the quantum evolution inside the in-
tegrable component of the tent map is analyzed in
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Fig. 8. The time scale t; determined by f(ty) = 0.9 (in a log-
arithmic representation) as a function of the number of qubits
ng. The data points correspond to the numerical simulation
for the same realization of static imperfections as in Figure 5
with e = 5 x 1077 (a) and € = 107° (b). The two full lines
correspond to ¢y given by (58) assuming the theoretical ex-
pression equation (50) for the fidelity. The two dashed curves
correspond to ¢; = t. In(10/9) for the simplified exponential
behavior f(t) = exp(—t/t.).
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Fig. 9. Scaling curve for fidelity as in the case of Figure 5 but
for the quantum evolution inside integrable component. Here,
the initial state is a minimal coherent wave packet taken inside
the regular part of phase space at § = 5.35 and p = 0; the same
realization of static imperfections as in Figure 5 is used.

Figures 9-11. Here, the initial state is located at § = 5.35
and p = 0 which is in middle between the center fix point
(0 = 37/2, p = 0) and the boundary of the stable island
(0 = 6.0, p = 0). We have determined for this case the time
scales f. and fy from the fit (55) and performed the same
scaling analysis in Figure 9 for the fidelity decay as in Fig-
ure 5 for the initial condition in the chaotic component.
The scaling curves with the theoretical expressions (57)
for t. and ty give a significant deviation from the RMT
result (upper group of curves in Fig. 9). To understand the
reason of this dispersion we also show the scaling curves
with the fitted time scales t. and ty. This procedure gives
a good scaling of numerical data (lower group of curves
in Fig. 9). Obviously, the fit (55) still works quite well as
such but the obtained fit parameters are eventually dif-
ferent from the initial condition in the chaotic component
and the RMT.

The dependence of £, on the theoretical value of ¢. is
presented in Figure 10. It shows that the theoretical ex-

10’} b x /
te /
10° x

x

10 /

10

3 5

10° P

i 10
Fig. 10. The time scale t. as in Figure 6 versus t. =
(e?ngn2) ", data are obtained from Figure 9 for the case of
regular dynamics. Shown are data points for ¢ = 5 x 1077 (a)
and ¢ = 107° (b) with 6 < ny < 18 in a double logarithmic

representation. The full line corresponds to te. = te.

- (by X /

=
- x
10 w

4
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10
ty
Fig. 11. The time scale tu as in Figure 7 versus tyg = 2"¢, data
are obtained from Figure 9 for the case of regular dynamics.
Shown are data points for ¢ = 5 x 1077 (a) and € = 107° (b)
with 6 < ng < 18 in a double logarithmic representation. The
full line corresponds to ty = 0.50tH.

pression works with a good accuracy in the interval of
6 orders of magnitude. This is not really a surprise since
according to (27) t- ! measures the overall strength of the
perturbation. However, for g shown in Figure 11 the sit-
uation is much more complicated. The variation of g vs.
ty = 2™ shows unusual steps and it is unclear what is the
real dependence in the limit of large n,. Further studies
are required for complete understanding of the static im-
perfection effects in this regime. This fact compromises the
possibility to determine the asymptotic dependence of ¢
on € and n, for the case of integrable or quasi-integrable
dynamics. In addition, the data of Figure 8 show that it
is not easy to determine the asymptotic behavior of ¢ in
absence of clear scaling laws. Due to these two remarks
we think that the scaling dependence for ¢ time scale,
proposed in [13,36] for the case of static imperfections,
represents in fact only an intermediate behavior and can-
not be extrapolated to the limit of large n,. Indeed, the
quantum evolutions studied in [13,36] correspond to quasi-
integrable regimes and additional tests are required to
check the validity of the RMT scaling (50) for the quan-
tum algorithms studied there.
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Fig. 12. Fidelity decay for initial minimal coherent state in
chaotic (full curve) and integrable (dashed curve) component
for ng =16, e =5 x 107".

Finally, it is interesting to compare directly the fi-
delity decay induced by static imperfections for the quan-
tum evolution in chaotic and integrable components (see
Fig. 12). The numerical data show that f(¢) decreases
faster in the case of integrable evolution. As it was dis-
cussed in [31] the presence of chaos reduces the fidelity
decay rate. This is in the agreement with the results of
Figures 7 and 11 according to which fy is much smaller
for the integrable regime as for the regime of quantum
chaos. However, the possibility of using this fact to im-
prove the accuracy of quantum computations remains an
open question.

The numerical data presented in this section definitely
confirm the RMT universal law for fidelity decay for the
case when the evolution takes place in the regime of quan-
tum chaos. This means that this law works for quantum
algorithms simulating a complex dynamics. The situation
for the evolution in the integrable component is more com-
plicated. The data show that the theoretical expression
for t. is still valid but the dependence of the time scale ty
on ng requires further investigations.

It is interesting to note that the relation (50) should
also work for the problem of Loschmidt echo in systems
with quantum chaos [27,28,30-32]. In this case for small
perturbations ¢. is still given by equation (27) or, that is
equivalent, the inverse decrease rate is given by the Fermi
golden rule [28]. Then the scale ¢ty is determined by the
inverse density of states or for quantum maps by the num-
ber of states via relation tg = N. As a result for small
perturbations the decay of Loschmidt echo for such quan-
tum dynamics is still given by the universal decay relation

(Eq. (50)).

7 Husimi function

Here we discuss how an arbitrary quantum state |¢) can
be represented in the classical phase space in the process
of quantum computation. For this it is convenient to use
the coarse-grained Wigner function (or the Husimi func-
tion) [41,42]:

p(po,0o) = [{¢(po, 0o) | ) I? (59)

where the smoothing is done with the coherent state

|50(p0, 90)> =A Z ef(p*P0)2/4a27i90p |p>
p

(60)

Here, A is the normalization constant and a is the width
of the coherent state in the p-representation. The coher-
ent state corresponds to a Gaussian wave packet that
is localized in the classical phase space around a point
(0o, po) with widths Ap = a and Af = 1/(2a). We choose
a = y/N/12 such that the widths relative to the size of
the phase space are comparable:

A9 V302757

. 0.2887

VOV TN N T

61

The naive evaluation of the Husimi function (59) with-
out any optimization requires O(NN,Ny) operations (on
a classical computer) where N, and Ny are the numbers
of values for pg and 6 for which (59) is evaluated. In view
of equation (61) it is sufficient to choose N, = Np = VN
resulting in O(N?) operations which is very expensive as
compared to O(N log(N)?) operations needed by the sim-
ulation of the quantum map on a classical computer as
described in Section 3.

Fortunately, the evaluation of the Husimi function can
be done in a more efficient way. To motivate and explain
this let us first consider a modified Husimi function de-
fined by:

Ap 1

P2 (9o, 00) = (™ (po, 60) | )] (62)
with the modified coherent state:
1 po+vVN-1 _
0®) (po, 60)) = > e ®rlp).  (63)

Y
N P=Ppo

Here we assume for the sake of simplicity that the number

of qubits ng is even such that vV N = 2ma/2 ig integer. We

furthermore require that po is an integer multiple of vV N
and 0y = 2r1/v/N with [ =0, ..., VN — 1.

Comparing (60) with (63), we see that the Gaussian
pre-factor has been replaced by a box-function of
width v/N. This provides a very good localization for the
momentum representation but implies that in angle rep-
resentation the amplitude around 6, decreases only as a
power law according to the Fourier transform of the box-
function: sin(z)/2 with z = VN (0 — 6y)/2. However, the
modified coherent state (63) still provides a quite well lo-
calized state around the point (6y, po). Its main advantage
is related to the fact that it can be put in the form:

®) (po, 60)) = Ugpr [po + 1) (64)
where 6y = 271/ V/N and UQFT corresponds to the quan-
tum Fourier transform operator (see (13)) for the first
half of the qubits (ao, ..., an,/2—1). Equation (64) im-
plies that

P (po, 60) = |(p| Ugqerr | )2 (65)
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with p = po+1 = po++v/N6o/(27). Here the state Ugpr | )
can be evaluated efficiently on a quantum computer us-
ing (ng/4)(ng/2 + 1) elementary quantum gates accord-
ing to (19) (with n, replaced by n,/2). Emulating the
quantum computer on a classical computer this still costs
only O(N log(N)?) elementary operations. The matrix el-
ements (p|Uqrr |4) of this state with the momentum
eigenstates |p) provide directly via equation (65) the mod-
ified Husimi function. Here the value of p =0, ... N — 1
contains in its first half of the binary digits the informa-
tion for 6y and in its second half the information for pg.

Ng—

More explicitly, if p = Z;:ol a;27, we have:

ng—1 9 ng/2—1
. T .
po= D a2, fo=—%= 3 a2 (66)
Jj=nq/2 N J=0

We note that it is also possible to introduce another type
of modified Husimi function (and modified coherent state)
by exchanging the roles of 6y and pg:

0 ~
%7 (00,60) = 1(p | Uqper Ugrr | ).

where p = Nfo/(27) + po/v/N. As in equation (63),
we require that py is an integer multiple of /N and
6 = 271/V/N with [ = 0, ..., VN — 1. The operator
Uqrr corresponds to quantum Fourier transform for all
qubits and transforms a state from p- to f-representation.
UqrT corresponds as above to quantum Fourier transform
for the first half of the qubits. We mention that the coher-
ent states associated to (67) have a power-law localization
amplitude for p and a box-function localization amplitude
for 6.

We have seen that both types of modified Husimi
functions can be evaluated on a classical computer with
O(N log(N)?) operations. Based on the idea of the QFT
which is closely related to the FFT if simulated on a clas-
sical computer, we have also implemented an efficient clas-
sical algorithm for the original Husimi function (59) with
the Gaussian coherent states. For each value of pg, we only
consider the restricted sum such that |p —po| < 4v/N and
evaluate the matrix elements (p(po,8o) | ¥) for all values
of 6y simultaneously using FFT. This provides also an al-
gorithm with complexity O(N log(N)?) but with a consid-
erably larger numerical pre-factor. However, this method
does not allow for a “pure” quantum computation as it is
possible for the two types of modified Husimi functions.

In order to compare the different Husimi functions, we
consider a test-state defined by a circular superposition of
coherent states as:

|'€bcircle> = 121 Z

(PO,GO)EO

(67)

le(po, f0))- (68)

Here A is a normalization constant and the sum runs over
a discrete set of points (6y,pg) on a circle with center
(m, N/2) and relative diameter 0.7 (as compared to the
size of the phase space).

In Figure 13, we show the density plots for the three
types of Husimi functions for this test-state with n, =

a b C

Fig. 13. Density plots of the three different types of Husimi
functions for the circle-state (68) with n, = 10, 12, 14
(rows from top to bottom). The horizontal axis corresponds
to B € [0,27[ and the vertical axis to po € [0, N[. The den-
sity is minimal for blue/black and maximal for red/white. Col-
umn (a) corresponds to the Husimi function (59) with Gaus-
sian amplitude, column (b) to the momentum modified Husimi
function (62) and column (c) to the phase modified Husimi
function (67).

10, 12, 14. In all cases the circle picture of the density
is quite well reproduced and one clearly sees that the
circle has a finite width according to the widths of the
coherent states due to the quantum uncertainty princi-
ple (see Eq. (61)). For the modified Husimi function (62)
(column (b)), one clearly observes the effect of the power-
law decrease for the #-amplitude leading to a smearing
out of maxima in the f-direction. The same holds for the
second modified Husimi function (67) (column (c)) con-
cerning the p-direction. This effect is strongest for small
values of n, and becomes smaller with increasing n,. The
effect of smearing out is not visible for the original Husimi
function (59) (column (a)) with Gaussian amplitudes for 6
and p.

In order, to study the evolution of the Husimi func-
tion for chaotic and regular regimes in the quantum tent
map, we choose as initial condition the circle-state (68).
The semi-classical density of this state intersects quite well
with both regular and chaotic parts of the mixed phase
space (see Figs. 1 and 2).

In Figure 14 we show the density-plots of the Husimi
functions (defined by Eq. (59)) of the state obtained from
the circle-state after 100 iterations of the quantum map for
the cases ng = 10, 12, 14 (column (a)). We also show the
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Fig. 14. Density plot of the Husimi function (59) from the
the circle-state (68) after 100 iterations with the quantum map
with K = kT = 1.7 and T = 27/N = 27/2"¢ (columns (a)
and (b)) and after 100 iterations in the future and 100 itera-
tions with the inverse map in the past (columns (c) and (d)).
The first three rows correspond to ng = 10, 12, 14 (from top
to bottom) and the last row corresponds a classical density
plot obtained from a histogram-sampling with a box-size cor-
responding to the resolution for ngy = 14 and with an aver-
age number of 100 classical trajectories per box. Columns (a)
and (c) correspond to the exact quantum or classical maps only
limited by the relative machine precision 107'¢. Columns (b)
and (d) correspond to the quantum computation with random
errors in quantum gates (¢ = 0.01) or perturbed the classical
map perturbed by noise with £ = 0.01 (see text).

state that is obtained by applying further 100 iterations of
the inverse quantum map which should theoretically pro-
vide the original circle-state (column (c)). In Figure 14 we
also show a density-plot for the classical map (3) (with p
to be taken modulo 27/T). Here we have determined the
classical trajectories of 100N random initial points on the
circle. Then the density-plot has been calculated from a
histogram with a finite box-size corresponding to the finite
resolution of the quantum case with n, = 14.

One clearly sees in column (a) that the chaotic part of
the phase space is filled up ergodically while the piece of
the circle intersecting the regular part of the phase space
remains a connected line. Actually, this line rotates with a
constant angular velocity around the center fix-point due
to the local linear behavior of V'(6) close to the fix-point.

Concerning the states obtained after the back-iteration
in time, which are shown in column (c), one observes that
the inverse quantum map reproduces exactly the initial
state while for the classical map only the pieces of the cir-
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cle belonging to the regular part of the phase space are
reproduced. This is due to the finite machine precision
(of 10716) together with the exponential instability in the
chaotic part of the phase space. We have verified that for
only 25 iterations, the circle is well reproduced in every
part of the phase space. At 50 iterations the classical com-
puter round-off errors already have significant effects but
are not sufficient to create a uniform distribution in the
chaotic region as it is the case with 100 iterations shown
in Figure 14, last row of column (c). This effect is com-
pletely absent in the quantum simulation. The information
for the phase space distribution is encoded in the quantum
state in such a way that it is not sensible to the round-off
errors of the classical computer simulating the quantum
algorithm for the tent map.

To investigate this point in more detail, we have also
performed a quantum simulation where all quantum gates
are perturbed by random errors (see Sect. 3). The effects
of this noisy perturbation can be seen in Figure 14 in the
columns (b) (100 forward iterations of the circle-state)
and (d) (100 forward and 100 backward iterations) where
we have chosen ¢ = 0.01. Concerning the quantum map,
the noise reduces some-how the general quality of the pic-
tures but it does not distinguish between chaotic and regu-
lar regions of the phase space. In particular in column (d),
the circular density is quite well reproduced with some ad-
ditional overall noise. Concerning the classical map, the
circle-pieces in the regular region still remain closed lines
but they acquire a finite width which increases in a diffu-
sive way with the number of iterations. The circle-pieces
in the chaotic region become very quickly mixed. Further-
more, it is not possible to reproduce the initial circle in
the chaotic region due to the exponential instability (last
row of column (d)). We have verified that this effect is al-
ready true for only 15 forward and 15 backward iterations
if e = 0.01 (for the classical map the noise is introduced in
the equation for momentum with an amplitude ¢ = 0.01,
Figure 14 bottom (d)).

We have also studied the effects of static imperfections
on the Husimi function evolution in the tent map. In Fig-
ure 15, we show the results of static imperfections with
e =107° and n, = 10, 12, 14. The initial state is again
the circle-state and column (a) corresponds to the state
after 100 forward iterations and column (b) to the state
after 100 forward and 100 backward iterations. The effect
is quite similar to the quantum computation with random
errors (columns (b) and (d) of Fig. 14). The general quality
of the pictures is reduced and there is no distinction be-
tween regular and chaotic part of the phase space. Again,
in column (b) the circular density is quite well reproduced
with some additional overall noise. We should note that
the static imperfections of strength ¢ = 107° give pertur-
bations in the Husimi function which are comparable with
those in the case of random errors at ¢ = 0.01. This shows
that the static imperfections perturb the quantum com-
putations in a stronger way comparing to random errors.

Finally, we show in Figure 16 the modified Husimi
functions (62) after 100 iterations applied to the initial
circle-state again for the three cases n, = 10, 12, 14.
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Fig. 15. Density plot of the Husimi function (59) from the
the circle-state (68) after 100 iterations with the quantum map
(same values as in Fig. 14) perturbed by static errors (see text)
with ¢ = 107 (column (a)) and after 100 iterations in the
future and 100 iterations with the inverse perturbed map in
the past (column (b)). The different rows correspond to ng =
10, 12, 14 (from top to bottom).

Column (a) shows the exact simulation, (b) the case of
random errors (¢ = 0.01) and (c¢) the quantum map
with static imperfections (¢ = 107°). We note that the
smearing-out effect discussed at the beginning of this sec-
tion (see Fig. 13) is well visible for the case of the exact
simulation, while it is not visible at all for the cases with
random errors or static imperfections. Therefore, the uti-
lization of the modified Husimi function seems to be quite
well justified in these cases.

8 Conclusion

The results obtained in this paper give a universal de-
scription of fidelity decay in quantum algorithms simulat-
ing complex dynamics on a realistic quantum computer
with static imperfections. This decay is given by equa-
tion (50) which determines the time scale t; of reliable
quantum computation with fidelity f > 0.9. According to
equation (50)

ty ~ te/10 =1/(10e’ngn2); Ny~ 1/(10e°ngng) (69)
for ty > t. so that ¢ > €., = 2*”'1/2/(719\/11—(1). Here,
Ny = tgng is the total number of gates which can be
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Fig. 16. Density plot of the modified Husimi function (62)
from the the circle-state (68) after 100 iterations with the quan-
tum map (same values as in Fig. 3). Column (a) corresponds
to the exact quantum map, column (b) to the map with ran-
dom errors in quantum gates with ¢ = 0.01 and column (c)
to the quantum map simulated with static imperfections with
e = 1075, The different rows correspond to ng = 10, 12, 14
(from top to bottom).

performed with fidelity f > 0.9. In this regime the static
errors act in a way similar to random noise errors even
if their effect is stronger due to coherent accumulation of
static errors inside a certain interval of the algorithm (one
map iteration for the tent map). Indeed, for random errors
in quantum gates the relation (22) gives

ty ~t,/10 = 5/(e®ng); Ny~ 5/ (70)

We note that (70) is in agreement with the result ob-
tained for random errors in a very different quantum algo-
rithm [36] and hence it is generic. Even if the dependence
of Ny on ¢ in equations (69, 70) is the same, the depen-
dence on n, is rather different. This difference should play
an important role for the quantum error correction codes
which allow to perform the fault-tolerant quantum com-
putation for the random error rate p, ~ € < 10~ (see

g. [2,3,54-56]). The fact that for random errors Ny is
independent of n, while for static imperfections N, drops
strongly with n, should significantly decrease the thresh-
old for fault-tolerant quantum computation in presence of
static imperfections.
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For t. < tgy or e < e, = 2_”‘7/2/(71571 /ng) the time CalMiP at Toulouse and IDRIS at Orsay for access to their
supercomputers.

scale ty is given by the relation

tr = 0.2vttn = 2"/2 /(5engng); Ny~ 2"/2 [ (5e\/ng).
(71)
In this regime the effect of static imperfections is abso-
lutely different from random noise errors. This regime may
be dominant for up to 10-15 qubits. However, in the limit
of large nq > 10 it appears only in the limit of very small
static imperfections and should not be very important for
quantum computers with few tens of qubits. The transi-
tion from the regime (69) to regime (71) takes place for

€ > eon =272/ (ngy/ny) - (72)
From the physical point of view this border can be in-
terpreted as the quantum chaos border above which the
static imperfections start to mix the energy levels of ideal
quantum algorithm. The fact that this border drops expo-
nentially with the number of qubits n, has been discussed
in [57] for a quantum algorithm for complex dynamics.
Above e, the effect of static imperfections becomes some-
what similar to random errors.

The results (69) and (71) for the time scales of reliable
quantum computation are based on the RMT approach
and are universal for algorithms which simulate a com-
plex dynamics, e.g. an evolution in the regime of quan-
tum chaos. However, it is important to keep in mind that
there are other types of algorithms where the evolution is
rather regular, e.g. the Grover algorithm or integrable dy-
namics. In such cases the asymptotic dependence of ¢ty on
ng should be studied in more detail. It is not excluded that
in such cases tg grows with ng very slowly (see Fig. 11)
or even may be independent of ny. In such situations the
static imperfections will generate a very significant reduc-
tion of the time scale of reliable quantum computation.
In a sense our RMT result (50) gives the weakest form
of fidelity decay in a realistic quantum computer with n,
qubits since the reduction of the chaotic component ¢ ac-
celerates this decay.

The universal regime for fidelity decay in quantum
computations established in this paper can also find other
applications. For example it can appear in the decay of
spin echo in interacting spin systems.

Upon completion of this manuscript a recent preprint
of T. Gorin, T. Prosen, and T.H. Seligman [59] came to
our attention where the relation between fidelity decay
and two-level form factor has been established for an ab-
stract Hamiltonian model with continuous time evolution
and a perturbation given by an invariant random matrix.
However, in this work only the regime of a small pertur-
bation strength A <« 1 (A ~ /tg/t;) is studied which
translates to ty < t. with the dominant Gaussian decay.

This work was supported in part by the EC IST-FET project
EDIQIP and the NSA and ARDA under ARO contract
No. DAAD19-01-1-0553 and by the French goverment grant
ACI Nanosciences-Nanotechnologies LOGIQUANT. We thank
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